Schalal

地理科学中的人工智能

参考资料:

地理现象的空间性

  1. 表达:MAUP,Ecological Fallacies——场模型/对象模型/网络模型——空间狙击型数据(intensive,空间聚合时不可累加,满足空间稳态假设,连续,采样规则,属性单调,常见于趋势分析、表面建模)/延展性数据(extensive,空间聚合时可累加,稀疏,采样不规则,属性丰富,常用于回归分析及预测),Distinguishing extensive and intensive properties for meaningful geocomputation and mapping [2019] Scheider S., Huisjes M.D
  2. 建模:空间机理,spatial principles
  3. 推测:时空切片下的数据不完备性:稀疏、缺失的空间分布;难以观测的空间交互;度量的错位(尺度、采样、地理语境等)

朱递, 地理现象空间分布的人工神经网络建模与分析方法研究, 北京大学博学位论文, 2020

空间显式的地理人工智能

Spatial Explicit Model(SEM):最早出现在生态学领域:

AI与地理科学的渊源:

GeoAI 会议及研讨会:

The integration of geography and AI has given rise to the new and exciting interdisciplinary field of geospatial artificial intelligence. (GeoAI)

GeoAI can be regarded as a study subject to develop intelligent computer programs to mimic the processes of human perception, spatiaL reasoning, and discovery about geographical phenomena and dynamics; to advance our knowledge; and to solve problems in human environmental systems and their interactions. With a focus on spatial contexts and roots in geography or geographic information science(GIScience).

GeoAI is an emergent spatial analytical framework for data-intensive GIScience which leverages recent breakthroughs in machine learning and advanced computing to achieve scalable processing and intelligent analysis of geospatial big data.

地理领域的相关定义论文:

几条准则(2001, Goodchild M.):

人工智能与地理空间的内在联系

空间表达的先验+机理建模的策略+时空预测的场景:

location encoding != geocoding

A review of location encoding for GeoAI: methods and applications [2022] Gengchen Mai, Krzysztof Janowicz, Ling Cai & Ni Lao et al.: A NN-based encoding process which represents a point/location into a high dimensionalvector/embedding such that this embedding can preserve different spatial information (e.g. distance, direction) and, at the same time, be learning-friendly for downstream machine learning (ML) models such as neural nets and support vector machines (SVM). Distance Preservation: nearby locations to have similar embeddings. Direction Awareness: locations that point into similar directions have similar embeddings.

A foundation representation framework for different spatial data types? (points,raster, olylines,polygons, and graphs (networks))

地理空间机理的建模:

空间推测:

spatial represenation –> (collect) –> data samples –> (derive) –> spatial relationships –> (predict/interpolate) –> spatial distribution of target variable

分类:插值/尺度变换/流数据补全/预测/知识推理 e.g.

地理人工智能的城市应用

GeoAI问题与挑战