推荐阅读:
City seeds: Geography and the origins of the European city system. M. Bosker & E. Buringh. JUE. 2017
Human behavior and the Principle of Least Effort: An Introduction to Human Ecology
Zipf’s Law:
\[logS=logm-qlogR\]城市的位序规模,Yule-Simon Model: 词频、论文数、人口数、收入等的分布都是幂律分布
计:前\(k\)个词中出现次数为\(i\)的词共有\(f(i,k)\)个。做如下假设:
Gibrat’s law
growth rates of individual cities are independently and identically distributed (iid) random variables:城市(人口)的增长速度与城市规模无关
Mori et al., Common power laws for cities and spatial fractal structures, 2020, PNAS
引入交互项后的城市增长:Verbavatz V, Barthelemy M. The growth equation of cities[J]. Nature, 2020, 587(7834): 397-401.
\[\frac{\partial{S_i}}{\partial{t}}=\eta_iS_i+\sum_{j\epsilon N(i)}{(J_{j\rightarrow i}-J_{i\rightarrow j})}\]where the quantity \(\eta_i\) is a random variable accounting for the ‘out-of-system’ growth of city ; the data show that \(\eta_i\) is Gaussian-distributed.The flow \(J_{j\rightarrow i}\) is the number of individuals moving from city \(i\) to city \(j\) during aperiod of time \(dt\). If there is an exact balance of migration flows (\(J_{j\rightarrow i}=J_{i\rightarrow j}\)), the equation becomes equivalent to Gibrat’s model which predicts a log-normal distribution of populations.
使用重力模型评估\(J_{j\rightarrow i}\):
\[J_{j\rightarrow i}=I_0\frac{S_i^{\mu}S_j^{\nu}}{d_{ij}^{\sigma}}\]distance free:
\[J_{j\rightarrow i}=I_0S_i^{\mu}S_j^{\nu}\]distance-free后模型可可解析但丢失了空间性。
引入其他干扰项\(\chi_{ij}\),则:\(J_{j\rightarrow i}=I_0S_i^{\mu}S_j^{\nu}\chi_{ij}\),令人均迁入比\(I_{ji}=J_{j\rightarrow i}/S_i\),则有:
\[\frac{I_{ij}}{I_{ji}}=(\frac{S_i}{S_j})^{1-\mu+\nu}\frac{\chi_{ji}}{\chi_{ij}}\]通过实证得到\(\frac{\chi_{ji}}{\chi_{ij}}\approx 1\),进而通过实证得到\(\mu\approx\nu\),得到最终的模型形式:
\[I_{ij}=\frac{I_0S_j^{\nu}S_i^{\nu}\chi_{ij}}{S_j}=I_0S_j^{\nu-1}S_i^{\nu}\chi_{ij}\]则:
\(J_{i\rightarrow j}=I_0S_j^{\nu}S_i^{\nu}\chi_{ij}\) \(J_{j\rightarrow i}-J_{i\rightarrow j}=I_0S_i^{\nu}S_j^{\nu}(\chi_{ji}-\chi_{ij})\)
\[\sum_{j\epsilon N(i)}{J_{j\rightarrow i}-J_{i\rightarrow j}}=I_0S_i^{\nu}\sum_{j\epsilon N(i)}{S_j^{\nu}(\chi_{ji}-\chi_{ij})}=I_0S_i^{\nu}\sum_{j\epsilon N(i)}{\chi_{ij}}\]此外:
\[\zeta_i=\frac{1}{|N(i)|^{1/{\alpha}}}\sum_{j\epsilon N(i)}{\chi_{ij}}\]其中\(\zeta_i\)是Lévy分布的特征函数值
最终得到:
\[\frac{\partial{S_i}}{\partial{t}}=\eta_iS_i+DS_i^{\beta}\zeta_i\]其中:\(D\propto{I_0},\beta=\nu+\gamma/\alpha,\eta_i\)是有平均增长率\(r\)和标准差\(\sigma\)的高斯噪声
central place theory: Central places in Southern Germany
中心地理论的相关研究:
使用超均匀分布对人类居住点的空间分布进行分析:Hyperuniform organization in human settlements
中心地理论与幂律分布:人口密度和邻域内设施密度的数量关系
优化项:
\[T=\frac{S}{v}+\frac{h}{P}\]其中\(T\)是行政单元的平均到达社会服务时间,\(S\)是平均到中心的距离,\(v\)是公交的速度,\(h\)是time of maintaining the center,\(P\)是人口总量。如果以\(A\)表示面积,\(D\)表示人口密度,\(g\)表示领域的形状密度,则有:
\(T=\frac{g\sqrt{A}}{v}+\frac{h}{AD}\) \(\frac{dT}{dA}=\frac{g}{2v\sqrt{A}}+\frac{h}{A^2D}\)
令导数=0,有:
\(A=(\frac{2vh}{gD})^{2/3}\) \(\log{A}=\frac{2}{3}\log{\frac{2vh}{g}}-\frac{2}{3}\log{D}\) \(\log{A}=K-\frac{2}{3}\log{D}\)
可以简单地推出“人口密度越高,区划面积越小”的结论,但显然\(D\)和\(A\)是有关联的,如果将\(D=\frac{P}{A}\)代回,则有:
\[A=\frac{4v^2h^2}{P^2g^2}\]与一般认知似乎不符…