Schalal

Data input format

推荐软件:Gephi

Local and global measures

local

(1) popularity, importance and power(基于节点)

  1. 度中心度 度的大小,degree centrality,centrality(G, 'degree', 'Importance', G.Edges.Weight)
  2. 特征向量中心度 同时顾及邻接节点的度的大小,eigenvector centrality,centrality(G, 'eigenvector', 'Importance', G.Edges.Weight)
  3. 接近中心性 到其他节点的最短距离之和越短,则接近中心度越高,closeness centrality,centrality(G, 'closeness', 'Importance', G.Edges.Weight)
  4. 中介中心性 所有节点间最短路径通过某节点的次数y,betweenness centrality,centrality(G, 'betweenness', 'Importance', G.Edges.Weight)

centralities will be positively correlated. When they are not, it tells you something interesting. ||high d|high e|high b|high c| |:—-:|:—-:|:—-:|:—-:|:—-:| |||||| |||||| |||||| |||||| ||||||

other measures:

random walk centrality improved centrality measures of weighted networks

(2) dyads, homophily and mutuality(基于边)

relationship/connection

social theories defining relational ties: homophily: introduced into social theory by Lazrsfeld and Merton(1978).

two causes of homophily: (1) norm attribute; (2)structural location

summary of homophily(Kadushin, 2012):相同属性的人的聚集->相互影响,在此过程中变得相似->end up in the same social position or placd->the very place influence them to become alike once they are in the same place.

four possible dyadic relationship: (0,0),(0,1),(1,0),(1,1)

measures:

  1. edge betweenness
  2. bridge: a bridge is a line whose removal will increases the number of components in the network.

Girvan-Newman algorithm for community detection

global

different network structure:

measures of segregation

edge embeddedness

mesoscale( or intermediate) structure

2 basic type:

typology of mesoscale structure:可以用邻接矩阵表示社群之间的联系

based on the typology, we have different mesoscale analysis:

Cohesive Subgroups

why finding cohesive subgroups?

凝聚子群,找到最密集的组团即可,不关心其他节点,与community在概念上并不一致

properties leading to cohesive subgroups

一些衡量的指标:

null model

modularity,模块度

\[Q=\frac{1}{2m}\sum_{ij}{(A_{ij}-P_{ij})\delta(C_i, C_j)}\]